prof. dr. J.P.W. Pluim

Full Professor
prof. dr. J.P.W. Pluim
  • Imaging Division

Research Programs

Strategic Program Cancer



Josien Pluim studied Computer Science at the University of Groningen and graduated in 1996, specializing in Scientific Computing and Imaging. Having done the research for her master's thesis at the Image Sciences Institute, she was bribed into staying as a PhD candidate. Her research project involved multimodality image registration, focusing on mutual information as the registration measure. In June 2001, she received her PhD degree.

She is Professor of Medical Image Analysis at Eindhoven University of Technology, in combination with a part-time position at the Image Sciences Institute. She is associate editor of the IEEE Transactions on Medical Imaging, IEEE Transactions on Biomedical Enigineering, Medical Physics, SPIE Journal of Medical Imaging and Medical Image Analysis. She chaired the Workshop on Biomedical Image Registration (WBIR) 2006, was programme co-chair of MICCAI 2010 and chair of the Image Processing conference of SPIE Medical Imaging (2006-2009).

Her research focusses on medical image analysis, both methodological and applied research. The main research themes are oncology, image registration and digital pathology.

Side Activities

Professor of Medical Image Analysis at Eindhoven University of Technology

Vice dean Department of Biomedical Engineering, TU/e, 1 Nov 2019 → …

NWO-ENW Disciplinaire Adviescommissie Informatica, 2018 → …

Adviesraad Analytic Imaging Diagnostics Arena (AIDA), Sweden, 2017 → …

Executive Board MICCAI Society, 2017 → …

Adviesraad post-master programmes School of Medical Physics & Engineering, TU/e, 2015 → …

Bestuur Institute for Diagnostic and Interventional Imaging, 2015 → …

Core Team Strategic Area Health, TU/e, 2014 → …

Board MICCAI Society, 2013 → 2017

Associate Editor Medical Image Analysis, 2008 → …

Adviesraad BSc+MSc programmes Computing Science, Rijksuniversiteit Groningen, 2007 → …

Associate Editor IEEE Transactions on Medical Imaging, 2003 → …

Fellowship and Awards

Elected Fellow of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society.

Research Output (179)

Deep learning-based grading of ductal carcinoma in situ in breast histopathology images

Wetstein Suzanne C., Stathonikos Nikolas, Pluim Josien P.W., Heng Yujing J., ter Hoeve Natalie D., Vreuls Celien P.H., van Diest Paul J., Veta Mitko 2021, In: Laboratory Investigation. 101 , p. 525-533

Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification

Jansen Mariëlle, Kuijf Hugo, Dhara Ashis K., Weaver Nick, Biessels Geert Jan, Strand Robin, Pluim JPW 1 nov 2020, In: Journal of Medical Imaging. 7 , p. 064003

Automated Quantitative Measures of Terminal Duct Lobular Unit Involution and Breast Cancer Risk

Kensler Kevin H, Liu Emily Z F, Wetstein Suzanne C, Onken Allison M, Luffman Christina I, Baker Gabrielle M, Collins Laura C, Schnitt Stuart J, Bret-Mounet Vanessa C, Veta Mitko, Pluim Josien P W, Liu Ying, Colditz Graham A, Eliassen A Heather, Hankinson Susan E, Tamimi Rulla M, Heng Yujing J nov 2020, In: Cancer Epidemiology Biomarkers & Prevention. 29 , p. 2358-2368 11 p.

Roto-translation equivariant convolutional networks:Application to histopathology image analysis

Lafarge Maxime W, Bekkers Erik J, Pluim Josien P W, Duits Remco, Veta Mitko 31 okt 2020, In: Medical Image Analysis. 68 , p. 101849

Correcting time-intensity curves in dynamic contrast-enhanced breast MRI for inhomogeneous excitation fields at 7T

van Rijssel Michael J., Pluim Josien P.W., Chan Hui Shan M., van den Wildenberg Lieke, Schmitz Alexander M.Th, Luijten Peter R., Gilhuijs Kenneth G.A., Klomp Dennis W.J. 1 aug 2020, In: Magnetic Resonance in Medicine. 84 , p. 1000-1010 11 p.

Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks

Heslinga Friso G, Alberti Mark, Pluim Josien P W, Cabrerizo Javier, Veta Mitko aug 2020, In: Translational vision science & technology. 9 , p. 1-9 9 p.

Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-parametric MRI

De Vente Coen, Vos Pieter, Hosseinzadeh Matin, Pluim Josien, Veta Mitko 8 mei 2020, In: IEEE Transactions on Biomedical Engineering. 68 , p. 374-383 10 p.

Accelerating implant RF safety assessment using a low-rank inverse update method

Stijnman Peter R.S., Tokaya Janot P., van Gemert Jeroen, Luijten Peter R., Pluim Josien P.W., Brink Wyger M., Remis Rob F., van den Berg Cornelis A.T., Raaijmakers Alexander J.E. 1 mei 2020, In: Magnetic Resonance in Medicine. 83 , p. 1796-1809 14 p.

Progressively Trained Convolutional Neural Networks for Deformable Image Registration

Eppenhof Koen A J, Lafarge Maxime W, Veta Mitko, Pluim Josien P W mei 2020, In: IEEE transactions on medical imaging. 39 , p. 1594-1604 11 p.

Deep learning assessment of breast terminal duct lobular unit involution:Towards automated prediction of breast cancer risk

Wetstein Suzanne C, Onken Allison M, Luffman Christina, Baker Gabrielle M, Pyle Michael E, Kensler Kevin H, Liu Ying, Bakker Bart, Vlutters Ruud, van Leeuwen Marinus B, Collins Laura C, Schnitt Stuart J, Pluim Josien P W, Tamimi Rulla M, Heng Yujing J, Veta Mitko apr 2020, In: PLoS ONE. 15 , p. e0231653

All research output

Thank you for your review!

Has this information helped you?

Please tell us why, so that we can improve our website.

Working at UMC Utrecht





Practical maakt gebruik van cookies

Deze website maakt gebruik van cookies Deze website toont video’s van o.a. YouTube. Dergelijke partijen plaatsen cookies (third party cookies). Als u deze cookies niet wilt kunt u dat hier aangeven. Wij plaatsen zelf ook cookies om onze site te verbeteren.

Lees meer over het cookiebeleid

Akkoord Nee, liever niet